中国期刊网-投稿、查重、发表有保障。
您的位置: 主页 > 学术论文 > 农业论文 >

梨种质资源果实若干数量性状评价指标探讨

发布时间:2023-01-18 08:57:12

摘    要:[目的]为了进一步完善我国梨种质资源描述评价体系,确定梨若干果实数量性状的分级评价指标及参照品种。[方法]通过对“国家果树种质兴城梨圃”保存的梨11个种456份资源和114份新品种共570份材料的9个果实数量性状进行数据采集及整理。使用SPSS 19.0软件进行数据统计分析,绘制各数量性状频率分布直方图,进行分级评价并选取参照品种。[结果]梨种质资源果实数量性状变异系数最大的是可滴定酸,含量为128.43%。9个果实数量性状数据均为偏正态分布。使用等距法绘制各果实数量性状频率分布图,果梗长度和果梗粗度采用5级分级,果心大小采用4级分级。由于脆肉型梨(含白梨、砂梨和脆肉型新品种)、西洋梨和秋子梨单果重、果实横径、果实纵径、果肉硬度、可溶性固形物含量、可滴定酸含量6个性状差异显著,因此分别进行分级,相应分级标准为:脆肉型梨和西洋梨的单果重、果实横径和果实纵径采用4级分级,秋子梨的单果重、果实横径和果实纵径采用3级分级;果肉硬度均采用3级分级;可溶性固形物含量和可滴定酸含量均采用5级分级。每个性状的各等级选取 2个参照品种。[结论]梨种质资源9个果实数量性状中可滴定酸含量的变异系数最高,更能体现梨品种间的差异。9个性状均不符合标准正态分布,其原因可能是长期人为选择的结果。软肉型梨(秋子梨和西洋梨)的平均可溶性固形物和可滴定酸含量大于脆肉型梨。9个果实数量性状采用了3级、4级和5级等3种不同的分级方法。


关键词:梨; 种质资源;果实数量性状;评价指标;分级;


The Evaluating Criteria of Some Fruit Quantitative Traits of Pear Genetic Resources

ZHANG Ying CAO Yufen

TIAN Luming DONG Xingguang QI Dan HUO Hongliang XU

Jiayu LIU Chao WANG Lidong

Research Institute of Pomology, Chinese Academy of Agricultural Sciences


Abstract:【Objective】Among all the phenotypic traits of pear germplasm, the fruit traits are the most valuable phenotypic characteristics that can determine the quality of pears and identify pear accessions. Furthermore, they are essential for the classification of pear species. This study was to establish evaluating criteria and provide reference cultivars for fruit quantitative traits of pear genetic resources, which can facilitate the information exchange and pear cultivar introduction and provided theoretical basis for the standardization of pear germplasm resources description.【Methods】 Data of nine fruit quantitative traits based on 570 pear accessions of 11 species and 114 bred cultivars that had been stored in the National Germplasm Repository of Pear (Xingcheng, China) were analyzed by SPSS.19.0. The coefficient variation and skewness were calculated and the frequency distribution histogram was drawn, including a normal curve. The nine fruit quantitative traits were graded and the reference cultivars were selected. 【Results】 The coefficient variation of titratable acidity was the largest, with 128.43%; and that of soluble solids content was the smallest, with 13.67%. Therefore, titratable acidity can better reflect the difference between varieties, and the genetic characteristics of soluble solids content are more stable. All the nine fruit quantitative traits were skewed normal distribution with the highest skewness in titratable acidity (2.75) and the lowest in stalk length (0.13). The difference between the mean and median of stalk thickness and flesh firmness were < 0.1, and the other traits were ≥ 0.1, indicating that the data of stalk thickness and flesh firmness were relatively concentrated compared with the other seven traits. Based on the frequency distribution of diversity, grade index and reference cultivars were given by statistical data for pear description. The classification of nine quantity characters of pear fruit was researched by isometric method. Stalk length and stalk thickness were divided into 5 grades, indicated by 1, 3, 5, 7 and 9, respectively, with 1 indicating the lowest, 9 the highest and 5 the intermediate level and the distribution frequency was more than 40%. Fruit core size was divided into 4 grades, indicated by 1, 3, 5 and 7, respectively, with 5 indicating intermediate level and the distribution frequency was more than 70%. Stalk length has a certain effect on fruit setting rate, the longer stalk length is more wind resistant. Stalk thickness has a certain effect on fruit enlargement, the thicker stalk thickness is conducive to the transportation of nutrients and fruit is easier to expand. Fruit core size is one of the important traits affecting the edible rate, when the fruit core is getting small, the edible rate is getting higher. Due to significant differences of weight per fruit, fruit diameter, fruit length, flesh firmness, soluble solids content and titratable acidity among Oriental crispy pear, P. ussuriensis (Ussurian Pear) and European Pear, separate grades were done. The coefficient variation of weight per fruit, fruit diameter and fruit length of European Pear were larger than Oriental crispy pear, Ussurian Pear, with 40.54%, 14.50% and 20.85%, respectively. The coefficient variation of flesh firmness and soluble solids content of Ussurian Pear were larger than European Pear and Oriental crispy pear, with 26.46% and 10.51%, respectively. The coefficient variation of titratable acidity of Oriental crispy pear was larger than European Pear and Ussurian Pear, with 66.00%. The average coefficient of variation of European Pear was the highest (29.06%), than that of Oriental crispy pear (26.30%), and of Ussurian Pear (25.98%) in order. The average soluble solids content and titratable acidity of Ussurian Pear were the highest (14.24% and 0.70%), than that of European Pear (13.51% and 0.30%), and of Oriental crispy pear (12.28% and 0.28%) in order. Weight per fruit, fruit diameter and fruit length of Oriental crispy pear and European Pear were divided into 4 grades, indicated by 3, 5, 7 and 9, respectively, with 5 indicating intermediate level and the distribution frequency was more than 40%, where was Ussurian Pear 3 grades, indicated by 3, 5, 7, with 5 indicating intermediate level and the distribution frequency was more than 60%. Flesh firmness was divided into 3 grades. Soluble solids content and titratable acidity were divided into 5 grades. Two reference cultivars were selected for each grade of single character, except extreme characters. 【Conclusion】 The nine fruit quantitative traits of pear germplasm resources were skewed normal distribution, which might be the result of long-term human selection. The mean soluble solids content and titratable acidity of soft pear (Ussurian Pear and European Pear) were higher than those of Oriental crispy pear. The nine fruit quantitative traits were classified by three different grading methods: grade 3, grade 4 and grade 5 according to the characteristics of each trait. Grading index system of fruit quantitative traits in pear was preliminarily built in this thesis, which will provide reference for evaluation, description and data standardization of pear.


Keyword:Pear; Genetic resource; Fruit quantity characters; Evaluation; Grade;


种质资源评价工作是资源合理利用的重要前提。在国际上,国际植物遗传资源研究所(International Plant Genetic Resources Institute, IPGRI)1983年出版了梨的描述符标准[1],国际植物新品种保护联盟(The International Union for the Protection of New Varieties of Plants, UPOV)于2000年出版了西洋梨新品种特异、一致性和稳定性测试标准[2]。中国于1990年和2006年分别出版了《果树种质资源描述符》[3]和《梨种质资源描述规范和数据标准》[4],对梨种质资源性状的描述和数据标准做了详细的解释,为梨种质资源数量性状的分级评价奠定了基础。这些标准的出台为建立梨种质资源的“国际语言”和促进梨种质资源评价工作起到了积极作用。然而,国际标准IPGRI对梨各数量性状均无数值指标,仅列出了对照品种[1],UPOV仅适用于西洋梨[2];中国标准除个别性状具有数量指标或参照品种外,绝大部分性状既没有数值指标,也没有参照品种,只有调查项目[3,4]。


目前,我国学者已对桃、杧果、枣、西瓜和南瓜等多种园艺作物数量性状进行了分级评价研究[5,6,7,8,9,10,11,12]。以梨种质资源数量性状的标准化描述和数据采集为基础,结合分子标记技术开展了数量性状定位、资源遗传多样性分析及资源分类学等方面的研究也很多[13,14,15,16,17,18,19]。中国作为梨的原产国,种质资源极为丰富,表型性状的系统描述对其起源、演化及品种资源的分类和多样性研究均具有重要参考价值,是种质资源共享体系建立的基础。在所有梨种质资源表型性状中,果实性状是决定梨品质和鉴定梨种类的最有价值的表型特征,对梨种质资源的正确分类具有重要意义。为了进一步完善我国梨种质资源描述评价体系,确定梨若干果实数量性状的分级评价指标及参照品种,本研究通过对国家果树种质兴城梨圃内保存的570份资源的若干果实数量性状数据进行统计分析,参照国际和国内标准的同时,结合我国梨种质资源评价工作的实际,对单果重、果实横径、果实纵径、果心大小、果梗长度、果梗粗度、果肉硬度、可溶性固形物含量和可滴定酸含量等9个果实数量性状的分级评价指标和参照品种进行了探讨,为梨种质资源描述的规范化和标准化提供理论依据。


1材料和方法

1.1材料

试验于2016—2020年在“国家果树种质兴城梨圃”内进行,数据采集自11—50年生健壮树,共计11个种570份材料,包括白梨(P. bretschneideri)119份、砂梨(P. pyrifolia)126份(其中日韩砂梨36份)、秋子梨(P. ussuriensis)98份(含野生种质45份)、新疆梨(P. sinkiangensis)23份、西洋梨(P. communis)70份、杜梨(P. betuleafolia)4份、豆梨(P. calleryana)4份、川梨(P. pashia)3份、河北梨(P. hopeiensis)1份、褐梨(P. phaeocarpa)3份、木梨(P. xerophila)5份和新品种(P. hybrid)114份(含脆肉型梨73份)。


1.2方法

1.2.1 数据采集

采集数据包括单果重、果实横径、果实纵径、果肉硬度、可溶性固形物含量、可滴定酸含量、果梗长度、果梗粗度和果心大小,具体方法参照《梨种质资源描述规范和数据标准》(Cao et al. 2006),其中果肉硬度和可滴定酸含量分别用GY-4型果实硬度计和905 Titrando全自动电位滴定仪测定。数据资料为3年平均值。


1.2.2 统计分析

使用Microsoft Excel 2007和SPSS19.0软件对数据进行统计分析,统计果实性状数据的最小值、最大值、平均值、中位数、偏态度、变异系数,并绘制各数量性状数据的频率分布直方图(含正态曲线),并参照王力荣等[5]用等距法对各数量性状分级、评价描述和选取参照品种。


2.结果与分析

2.1 梨种质资源果实性状变异系数及分布状态

变异系数的大小反映品种固有特征及品种间的个体差异,是性状遗传多样性的具体体现,性状变异系数越大,遗传背景越丰富,越有利于品种鉴定[5]。9个性状的变异情况见表1,其中可滴定酸含量的变异系数最大,为128.43%,因此可滴定酸含量更能反映品种间的差异;可溶性固形物含量的变异系数较小,为13.67%,说明可溶性固形物含量的遗传特性较其他8个性状稳定。平均值和中位数的差异反映了性状数据的集散性,其中果梗粗度和果肉硬度平均值和中位数的差异<0.1,其余都≥0.1,说明相对于其他7个性状果梗粗度和果肉硬度这2个性状的数据相对比较集中。偏态度的大小反映出偏正态分布数据峰值相对于正态分布数据峰值左右偏移的程度,结果表明各数量性状均为偏正态分布,其中果实横径、果实纵径和果梗长度的偏态度为负值,其余为正值,可滴定酸含量的偏态度最大(2.75),果梗长度的偏态度最小(-0.13)。


表1梨种质资源果实数量性状变异情况


2.2 梨种质资源果实性状分级指标及参照品种

对果梗长度、果梗粗度和果心大小(果心横径和果实横径的比)进行统计分析(表1),结果均为偏正态分布。果梗长度变异系数(28.80%)>果心大小(20.54%)>果梗粗度(20.05%)。果梗粗度对果实膨大有一定影响,果梗粗,利于营养的运输果实更易膨大。果心大小是影响可食率的重要性状之一,果心越小可食率越高。绘制果梗长度、粗度和果心大小频率分布直方图(图1)。按果梗长度和果梗粗度可将梨种质资源分为5级评价(表2),按果心大小可将梨种质资源分为4级评价(表3)。


2.3 梨栽培品种果实性状变异系数及分布状态

梨栽培品种从果实类型上分为脆肉型梨和软肉型梨两种,脆肉型梨包括白梨、砂梨和脆肉型新品种,软肉型梨又分为秋子梨和西洋梨两种。脆肉型梨、秋子梨和西洋梨三者的果实从外观和内质区别都比较明显,在果实性状分级指标上需要区别对待。


对318份脆肉型梨、70份西洋梨和53份秋子梨的单果重、果实横径、果实纵径、果肉硬度、可溶性固形物含量和可滴定酸含量等果实性状进行统计分析和分级评价(表4),平均数和中位数的差值可以看出数据的分散程度,单果重相对于果实横径、果实纵径、果肉硬度、可溶性固形物含量和可滴定酸含量数据较分散。偏态度的大小反映出偏正态分布数据,峰值相对于正态分布数据峰值左右偏移的程度,西洋梨果实纵径的偏态度小于0.1,为正态分布,其余性状偏态度绝对值大于0.1,为偏正态分布。西洋梨单果重变异系数(40.54%)>秋子梨(40.42%)>脆肉型梨(33.38%),西洋梨果实横径变异系数(14.50%)>秋子梨(14.05%)>脆肉型梨(11.80%),西洋梨果实纵径变异系数(20.85%)>脆肉型梨(15.34%)>秋子梨(15.15%),秋子梨果肉硬度变异系数(26.46%)>西洋梨(25.89%)>脆肉型梨(22.16%),秋子梨可溶性固形物含量变异系数(10.51%)>西洋梨(9.69%)>脆肉型梨(9.14%),脆肉型梨可滴定酸含量变异系数(66.00%)>西洋梨(62.86%)>秋子梨(49.31%)


表4 梨栽培品种果实性状变异情况


2.4 梨栽培品种果实性状分级指标及参照品种

2.4.1 果实大小

果实大小可用单果重、果实横径和果实纵径来衡量。绘制脆肉型梨、西洋梨和秋子梨果实大小频率分布直方图(图2)。其中,脆肉型梨果实横径和果实纵径的分布图,在7~7.5cm横径频率高于纵径,原因是这个等级扁圆形的果占一定比例。秋子梨以扁圆形果实为主,但4.0~5.0cm纵径频率高于横径,说明这个等级中包含非扁圆形果实。按单果重、果实横径和果实纵径可将脆肉型梨和西洋梨分为4级评价,秋子梨分为3级评价(表5-表7)。


2.4.2果肉硬度

果肉硬度是指果实在最佳食用期的去皮硬度。绘制脆肉型梨、西洋梨和秋子梨果肉硬度频率分布直方图(图3)。脆肉型梨果肉硬度小于5 kg/cm2的资源果肉类型一般为疏松,5~9 kg/cm2的资源果肉类型一般为疏松、松脆、脆或紧脆,大于9 kg/cm2的资源果肉类型一般为脆、紧脆或紧密。西洋梨果肉硬度分布在1.37~5.74 kg/cm2,果肉类型包括软溶、软、软面和沙面。秋子梨果肉硬度小于3 kg/cm2的资源果肉类型一般为软溶,5~6 kg/cm2的资源果肉类型一般为软、软面或松软,大于6kg/cm2的资源果肉类型一般为松脆。按果肉硬度可将脆肉型梨、西洋梨和秋子梨分为3级评价(表8)。


2.4.3可溶性固形物含量

绘制脆肉型梨、西洋梨和秋子梨可溶性固形物含量频率分布直方图(图4)。按可溶性固形物含量可将脆肉型梨、西洋梨和秋子梨分为5级评价(表9)。


2.4.4 可滴定酸含量

绘制脆肉型梨、西洋梨和秋子梨可滴定含量频率分布直方图(图4)。脆肉型梨可滴定酸含量小于0.08%的梨资源果实风味一般为淡甜,0.08%~0.16%的资源果实风味一般为淡甜或甜,0.16%~0.40%的资源果实风味一般为甜和酸甜,0.40%~0.88%的资源果实风味一般为甜酸,≥0.88%的资源果肉风味一般为酸。西洋梨可滴定酸含量小于0.18%的资源果实风味一般为甘甜、甜或酸甜,0.18%~0.48%的资源果肉风味一般为甜、酸甜或甜酸,0.48%~0.88%的资源果肉风味一般为酸甜或甜酸,≥0.88%的资源果肉风味一般为酸。秋子梨可滴定酸含量<0.25%的资源果实风味一般为甜或酸甜,0.25%~0.35%的资源果实风味一般为酸甜或甜酸,0.35%~0.85%的资源果肉风味一般为酸甜、甜酸或酸,≥0.85%的资源果肉风味一般为甜酸或酸。按可滴定酸含量可将脆肉型梨、西洋梨和秋子梨分为5级评价(表10)。


3讨论

数量性状虽然受环境条件和栽培条件影响较大,但当群体足够大时,仍然能够代表某一群体的变异情况和遗传多样性[5]。种质资源遗传多样性在同一个体或不同个体间也有不同程度的差异,其差异性对品种的改良和选育有着直接的影响,种质资源数量性状变异系数越大,遗传多样性程度越高[6,7,8,9,10,11,12]。对570份梨种质的9个果实性状分析发现,可滴定酸含量的变异系数最大为128.43%,可溶性固形物含量的变异系数较小为13.67%,说明种质表型差异明显,具有丰富的遗传多样性。本研究结果与以往研究结果相比较,梨种质资源果实性状的平均变异系数41.95%[15]>叶片和枝条的平均变异系数19.09% [14]>花器官的平均变异系数14.21% [13],这是由于果实性状往往是人为定向选择的目标,例如高酸品种为优良的加工品种,选育果心小的品种对于提高可食率有重要意义。


梨种质资源9个果实数量性状均不符合标准正态分布,据有关学者研究,枣[20]、李[21]和榛子[22]等果树的部分数量性状也不符合正态分布,其原因可能是长期人为选择的结果。此外,果型中包含扁圆形、圆形、葫芦形等质量性状的等位基因,不是单纯的数量性状。但如果将这些植物学性状分别进行等级划分,则必然造成标准划分过细,影响标准的实用性[5]。


国内外对农作物数量性状的分级方法归纳起来主要有9级、5级和3级等分级方法,如王力荣[6]对桃果实数量性状采用5级分类法,刘孟军等[9]对枣树数量性状分别用5级和3级分法,周俊国[10]等对蔓生南瓜数量性状采用了9级分类法。梨资源果实数量性状数据均为连续分布,不同性状的变异幅度差异较大,本研究分级评价主要考虑到数量性状的分布状态、引种者对数量性状的常用评价以及方便国际间的交流,对梨种质资源果梗长度、果梗粗度和果心大小采用5级和4级分级;对梨栽培品种(脆肉型梨、秋子梨和西洋梨)单果重、果实横径、果实纵径、果肉硬度、可溶性固形物含量和可滴定酸含量等6个性状采取了5级、4级和3级3种不同的分级方法。梨栽培品种中西洋梨的平均变异系数29.06%>脆肉型梨26.30%>秋子梨25.98%。可溶性固形物含量秋子梨14.24%>西洋梨13.51%>脆肉型梨12.28%,可滴定酸含量秋子梨0.70%>西洋梨0.30%>脆肉型梨0.28%。


本研究对梨果实数量性状进行了概率分级,提出了基于数量性状分布特征的梨果实性状的概率分级指标体系,较好的体现了梨果实性状变异的中值和离散程度及各级性状值占总变异的比例,为梨种质资源的评价描述、品种选育及生产中果实分级提供了参考。


4 结论

梨种质资源9个果实数量性状中可滴定酸含量的变异系数最高,更能体现梨品种间的差异。9个性状均不符合标准正态分布,其原因可能是长期人为选择的结果。软肉型梨(秋子梨和西洋梨)的平均可溶性固形物和可滴定酸含量大于脆肉型梨。9个果实数量性状采用了3级、4级和5级等3种不同的分级方法。



参考文献

[1] IBPGR. Pear descriptors[M]. Rome. 1983.

[2] UPOV. Guidelines for the conduct of tests for distinctness, uniformity and stability, Pear (Pyrus communis L.) [M].Geneva, 2000.

[3] 蒲富慎.果树种质资源描述符-记载项目及评价标准[M]. 北京: 中国农业出版社, 1990: 23-39.

[4] 曹玉芬, 刘凤之, 胡红菊, 张冰冰. 梨种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006.

[5] 王力荣, 朱更瑞, 方伟超. 桃种质资源若干植物学数量性状描述指标探讨[J]. 中国农业科学, 2005, 38(4): 770-776.

[6] 王力荣, 朱更瑞, 方伟超.桃(Prunus persica L.)种质资源果实数量性状评价指标探讨[J]. 园艺学报, 2005, 32(1): 1-5.

[7] 朱敏, 高爱平, 邓穗生, 陈业渊. 杧果种质资源果实主要数量性状评价指标探讨[J]. 植物遗传资源学报, 2010, 11(4): 418-423.

[8] 马蔚红, 谢江辉, 武红霞, 王松标. 杧果种质资源果实数量性状评价指标探讨[J]. 果树学报, 2006, 23(2): 218-222.

[9] 刘孟军. 枣树数量性状的概率分级研究[J]. 园艺学报, 1996, 23(2): 105-109.

[10] 周俊国, 李新峥, 朱月林, 李海.蔓生型南瓜资源部分植物学数量性状的评价探讨[J]. 植物遗传资源学报, 2007, 8(1): 30-34.

[11] 尚建立, 王吉明, 郭琳琳, 马双武. 西瓜种质资源若干数量性状的评价指标探讨[J]. 果树学报, 2011, 28(3): 479-484.

[12] 尚建立, 王吉明, 郭琳琳, 马双武. 甜瓜种质资源果实若干数量性状评价指标探讨[J]. 果树学报, 2013, 30(02): 222-229.

[13] 张莹, 曹玉芬, 霍宏亮, 田路明, 董星光, 齐丹, 张小双. 基于花表型性状的梨种质资源多样性研究[J]. 园艺学报, 2016, 43(7): 1245-1246.

[14] 张莹, 曹玉芬, 霍宏亮, 徐家玉, 田路明, 董星光, 齐丹, 张小双, 刘超, 王立东.基于枝条和叶片表型性状的梨种质资源多样性[J].中国农业科学, 2018, 51(17): 3353-3369.

[15] ZHANG Y, CAO Y F, HUO H L, XU J Y, TIAN L M, DONG Xi G, QI D, LIU C. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.

[16] CAO Y F, TIAN L M, GA Y, LIU F Z. Genetic diversity of cultivated and wild Ussurian pear (Pyrusussuriensis Maxim.) in China evaluated with M13-tailed SSR markers[J]. Genetic Resources &amp; Crop Evolution, 2012, 59(1): 9-17.

[17] ZHANG R P, WU J, LI X G, KHAN M A, CHEN H, KORBAN S S, ZHANG S L. An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.) [J]. Plant Molecular Biology Reporter, 2013, 31: 678-687.

[18] WU J, LI L T, LI M, AWAIS KM, LI X G, CHEN H, YIN H, ZHANG S L. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers[J]. Journal of Experimental Botany, 2014, 65(20): 5771-5781.

[19] 张瑞萍, 吴俊, 李秀根, 杨健, 王龙, 王苏珂, 张绍铃.梨AFLP标记遗传图谱构建及果实相关性状的QTL定位[J]. 园艺学报, 2011, 38(10): 1991-1998.

[20] 刘平, 刘孟军, 周俊义,毕平. 枣树数量性状的分布类型及其概率分级指标体系[J].林业科学, 2003, 39(6): 78-82.

[21] 郁香荷, 章秋平, 刘威生, 孙猛, 刘宁, 张玉萍, 徐铭.中国李种质资源形态性状和农艺性状的遗传多样性分析[J]. 植物遗传资源学报, 2011, 12(3): 402-407.

[22]李京環,梁丽松,王贵禧,张日清,马庆华平楱种质资源坚果主要数量性状评价与分级研究[J].塔里木大学学报, 2016, 28(3): 96-102.


相关文章
100%安全可靠
7X18小时在线支持
支付宝特邀商家
不成功全额退款